Wakefield-Vette introduces heatsinks made from alumina and aluminum nitride for thermal management of high-power/voltage electronics, photovoltaic, LED, power resistors and other applications. While electrically insulating and thermally conducting, the ceramic heatsink is an effective combination for the circuit board and heatsink reliability of cooling thermally sensitive components and circuits. The power chip dies can be directly bonded onto ceramic heatsink as a module substrate to eliminate the thermal barriers to quickly dissipate the generated heat. These heatsinks extend component life and enhance performance.

Features
An innovative ceramic (Patent Pending) heatsink with unique design combines the tin plated solderable integral omniKlip spring with a molded aluminum oxide (Al2O3) or aluminum nitride (AlN) heatsink body to be mountable onto the PCB directly with no other fasteners needed. Unlike any others, this type of heatsink provides ease of assembly and an all-in-one solution (one part does all). It can be used with different package devices, such as TO-220, TO-247, TO-264 and TO-218 package, etc. series power devices with either natural or forced convention cooling.

CE-OMNI-38 Heat Sink

<table>
<thead>
<tr>
<th>WkV Part Number</th>
<th>Description</th>
<th>Package Cooled</th>
<th>Attachment Method</th>
<th>Length</th>
<th>Width</th>
<th>Height Off Base (Height of Fin)</th>
<th>Thermal Resistance @ Forced Air Flow</th>
<th>Thermal Resistance @ Natural</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE-OMNI-38</td>
<td>Ceramic Heat Sink for TO Devices w/omniKlip</td>
<td>TO-220, TO-247</td>
<td>Solderable Feet</td>
<td>38.4mm</td>
<td>34mm</td>
<td>9.2mm</td>
<td>3.8°C/W @ 200 LFM</td>
<td>7.0°C/W @ 200 LFM</td>
</tr>
</tbody>
</table>

Material: 95% Al2O3, Surface Area: 11,408mm2, Weight: 22 g
Additional Configurations & Custom Ceramic Heat Sinks
Contact Wakefield-Vette for more information or visit www.wakefield-vette.com

Common Ceramic Heatsinks are a rectangular or square shape ceramic as commonly seen in an extrusion heatsink that provides the most common use in cooling. It can be used as Chip-on-heat-sink (on the metalized surface) and makes it possible to achieve an extremely compact design for the entire cooling system. Using ceramic as the material for a heatsink ensures outstanding thermal conductivity and electrical insulation; the closer it is used to a source of heat, the greater the cooling advantage it offers.

Material: 95% Al₂O₃, Surface Area: 5,979mm², Weight: 15g